域¶
1.0 新版功能.
最初,Sphinx 是为一个单一的项目设想的,即 Python 语言的文档。不久之后,它作为一个文档工具提供给所有人,但 Python 模块的文档仍然深深地内置于其中–最基本的指令,如 function
,是为 Python 对象设计的。由于 Sphinx 已经变得有些流行,人们对将其用于许多不同的目的产生了兴趣:C/C++ 项目,JavaScript,甚至是 reStructuredText 标记(比如这个文档)。
虽然这一直是可能的,但现在通过为每一个这样的目的提供一个 域,可以更容易地支持使用不同编程语言的项目的文档,甚至是主要的 Sphinx 发行版不支持的项目。
域是一个标记的集合(reStructuredText 指令 和 角色),用来描述和链接属于一起的 对象,例如,编程语言的元素。域中的指令和角色名称有类似 domain:name
的名称,例如 py:function
。域也可以提供自定义索引(如 Python 模块索引)。
拥有域意味着当一组文档想要引用例如 C++ 和 Python 类时,不会出现命名问题。这也意味着支持整个新语言的文档的扩展更容易编写。
本节描述了包括在 Sphinx 中的域所提供的东西。域的 API 也被记录在 Domain API 部分。
基础标记¶
Most domains provide a number of object description directives, used to
describe specific objects provided by modules. Each directive requires one or
more signatures to provide basic information about what is being described, and
the content should be the description. A domain will typically keep an
internal index of all entities to aid cross-referencing. Typically it will
also add entries in the shown general index.
If you want to suppress the addition of an entry in the shown index, you can
give the directive option flag :noindexentry:
.
If you want to typeset an object description, without even making it available
for cross-referencing, you can give the directive option flag :noindex:
(which implies :noindexentry:
).
Though, note that not every directive in every domain may support these
options.
3.2 新版功能: The directive option noindexentry
in the Python, C, C++, and Javascript
domains.
An example using a Python domain directive:
.. py:function:: spam(eggs)
ham(eggs)
Spam or ham the foo.
This describes the two Python functions spam
and ham
. (Note that when
signatures become too long, you can break them if you add a backslash to lines
that are continued in the next line. Example:
.. py:function:: filterwarnings(action, message='', category=Warning, \
module='', lineno=0, append=False)
:noindex:
(This example also shows how to use the :noindex:
flag.)
The domains also provide roles that link back to these object descriptions. For example, to link to one of the functions described in the example above, you could say
The function :py:func:`spam` does a similar thing.
As you can see, both directive and role names contain the domain name and the directive name.
Default Domain
For documentation describing objects from solely one domain, authors will not
have to state again its name at each directive, role, etc… after
having specified a default. This can be done either via the config
value primary_domain
or via this directive:
- .. default-domain:: name¶
Select a new default domain. While the
primary_domain
selects a global default, this only has an effect within the same file.
If no other default is selected, the Python domain (named py
) is the
default one, mostly for compatibility with documentation written for older
versions of Sphinx.
Directives and roles that belong to the default domain can be mentioned without giving the domain name, i.e.
.. function:: pyfunc()
Describes a Python function.
Reference to :func:`pyfunc`.
Cross-referencing syntax¶
For cross-reference roles provided by domains, the same facilities exist as for general cross-references. See 交叉引用语法.
In short:
You may supply an explicit title and reference target:
:role:`title <target>`
will refer to target, but the link text will be title.If you prefix the content with
!
, no reference/hyperlink will be created.If you prefix the content with
~
, the link text will only be the last component of the target. For example,:py:meth:`~Queue.Queue.get`
will refer toQueue.Queue.get
but only displayget
as the link text.
The Python Domain¶
The Python domain (name py) provides the following directives for module declarations:
- .. py:module:: name¶
This directive marks the beginning of the description of a module (or package submodule, in which case the name should be fully qualified, including the package name). It does not create content (like e.g.
py:class
does).This directive will also cause an entry in the global module index.
options
- :platform: platforms (comma separated list)¶
Indicate platforms which the module is available (if it is available on all platforms, the option should be omitted). The keys are short identifiers; examples that are in use include “IRIX”, “Mac”, “Windows” and “Unix”. It is important to use a key which has already been used when applicable.
- :synopsis: purpose (text)¶
Consist of one sentence describing the module’s purpose – it is currently only used in the Global Module Index.
- :deprecated: (no argument)¶
Mark a module as deprecated; it will be designated as such in various locations then.
- .. py:currentmodule:: name¶
This directive tells Sphinx that the classes, functions etc. documented from here are in the given module (like
py:module
), but it will not create index entries, an entry in the Global Module Index, or a link target forpy:mod
. This is helpful in situations where documentation for things in a module is spread over multiple files or sections – one location has thepy:module
directive, the others onlypy:currentmodule
.
The following directives are provided for module and class contents:
- .. py:function:: name(parameters)¶
Describes a module-level function. The signature should include the parameters as given in the Python function definition, see Python Signatures. For example:
.. py:function:: Timer.repeat(repeat=3, number=1000000)
For methods you should use
py:method
.The description normally includes information about the parameters required and how they are used (especially whether mutable objects passed as parameters are modified), side effects, and possible exceptions.
This information can (in any
py
directive) optionally be given in a structured form, see Info field lists.options
- :async: (no value)¶
Indicate the function is an async function.
2.1 新版功能.
- :canonical: (full qualified name including module name)¶
Describe the location where the object is defined if the object is imported from other modules
4.0 新版功能.
- .. py:data:: name¶
Describes global data in a module, including both variables and values used as “defined constants.” Class and object attributes are not documented using this environment.
options
- :type: type of the variable (text)¶
2.4 新版功能.
- :value: initial value of the variable (text)¶
2.4 新版功能.
- :canonical: (full qualified name including module name)¶
Describe the location where the object is defined if the object is imported from other modules
4.0 新版功能.
- .. py:exception:: name¶
Describes an exception class. The signature can, but need not include parentheses with constructor arguments.
options
- :final: (no value)¶
Indicate the class is a final class.
3.1 新版功能.
- .. py:class:: name¶
- .. py:class:: name(parameters)
Describes a class. The signature can optionally include parentheses with parameters which will be shown as the constructor arguments. See also Python Signatures.
Methods and attributes belonging to the class should be placed in this directive’s body. If they are placed outside, the supplied name should contain the class name so that cross-references still work. Example:
.. py:class:: Foo .. py:method:: quux() -- or -- .. py:class:: Bar .. py:method:: Bar.quux()
The first way is the preferred one.
options
- :canonical: (full qualified name including module name)¶
Describe the location where the object is defined if the object is imported from other modules
4.0 新版功能.
- :final: (no value)¶
Indicate the class is a final class.
3.1 新版功能.
- .. py:attribute:: name¶
Describes an object data attribute. The description should include information about the type of the data to be expected and whether it may be changed directly.
options
- :type: type of the attribute (text)¶
2.4 新版功能.
- :value: initial value of the attribute (text)¶
2.4 新版功能.
- :canonical: (full qualified name including module name)¶
Describe the location where the object is defined if the object is imported from other modules
4.0 新版功能.
- .. py:property:: name¶
Describes an object property.
4.0 新版功能.
options
- :abstractmethod: (no value)¶
Indicate the property is abstract.
- :classmethod: (no value)¶
Indicate the property is a classmethod.
- :type: type of the property (text)¶
- .. py:method:: name(parameters)¶
Describes an object method. The parameters should not include the
self
parameter. The description should include similar information to that described forfunction
. See also Python Signatures and Info field lists.options
- :abstractmethod: (no value)¶
Indicate the method is an abstract method.
2.1 新版功能.
- :async: (no value)¶
Indicate the method is an async method.
2.1 新版功能.
- :canonical: (full qualified name including module name)¶
Describe the location where the object is defined if the object is imported from other modules
4.0 新版功能.
- :classmethod: (no value)¶
Indicate the method is a class method.
2.1 新版功能.
- :final: (no value)¶
Indicate the class is a final method.
3.1 新版功能.
- :property: (no value)¶
Indicate the method is a property.
2.1 新版功能.
4.0 版后已移除: Use
py:property
instead.
- :staticmethod: (no value)¶
Indicate the method is a static method.
2.1 新版功能.
- .. py:staticmethod:: name(parameters)¶
Like
py:method
, but indicates that the method is a static method.0.4 新版功能.
- .. py:classmethod:: name(parameters)¶
Like
py:method
, but indicates that the method is a class method.0.6 新版功能.
- .. py:decorator:: name¶
- .. py:decorator:: name(parameters)
Describes a decorator function. The signature should represent the usage as a decorator. For example, given the functions
def removename(func): func.__name__ = '' return func def setnewname(name): def decorator(func): func.__name__ = name return func return decorator
the descriptions should look like this:
.. py:decorator:: removename Remove name of the decorated function. .. py:decorator:: setnewname(name) Set name of the decorated function to *name*.
(as opposed to
.. py:decorator:: removename(func)
.)There is no
py:deco
role to link to a decorator that is marked up with this directive; rather, use thepy:func
role.
- .. py:decoratormethod:: name¶
- .. py:decoratormethod:: name(signature)
Same as
py:decorator
, but for decorators that are methods.Refer to a decorator method using the
py:meth
role.
Python Signatures¶
Signatures of functions, methods and class constructors can be given like they would be written in Python.
Default values for optional arguments can be given (but if they contain commas, they will confuse the signature parser). Python 3-style argument annotations can also be given as well as return type annotations:
.. py:function:: compile(source : string, filename, symbol='file') -> ast object
For functions with optional parameters that don’t have default values (typically functions implemented in C extension modules without keyword argument support), you can use brackets to specify the optional parts:
- compile(source[, filename[, symbol]])¶
It is customary to put the opening bracket before the comma.
Info field lists¶
0.4 新版功能.
在 3.0 版更改: meta fields are added.
Inside Python object description directives, reST field lists with these fields are recognized and formatted nicely:
param
,parameter
,arg
,argument
,key
,keyword
: Description of a parameter.type
: Type of a parameter. Creates a link if possible.raises
,raise
,except
,exception
: That (and when) a specific exception is raised.var
,ivar
,cvar
: Description of a variable.vartype
: Type of a variable. Creates a link if possible.returns
,return
: Description of the return value.rtype
: Return type. Creates a link if possible.meta
: Add metadata to description of the python object. The metadata will not be shown on output document. For example,:meta private:
indicates the python object is private member. It is used insphinx.ext.autodoc
for filtering members.
注解
In current release, all var
, ivar
and cvar
are represented as
“Variable”. There is no difference at all.
The field names must consist of one of these keywords and an argument (except
for returns
and rtype
, which do not need an argument). This is best
explained by an example:
.. py:function:: send_message(sender, recipient, message_body, [priority=1])
Send a message to a recipient
:param str sender: The person sending the message
:param str recipient: The recipient of the message
:param str message_body: The body of the message
:param priority: The priority of the message, can be a number 1-5
:type priority: integer or None
:return: the message id
:rtype: int
:raises ValueError: if the message_body exceeds 160 characters
:raises TypeError: if the message_body is not a basestring
This will render like this:
- send_message(sender, recipient, message_body[, priority=1])
Send a message to a recipient
- 参数
- 返回
the message id
- 返回类型
- 引发
ValueError – if the message_body exceeds 160 characters
TypeError – if the message_body is not a basestring
It is also possible to combine parameter type and description, if the type is a single word, like this:
:param int priority: The priority of the message, can be a number 1-5
1.5 新版功能.
Container types such as lists and dictionaries can be linked automatically using the following syntax:
:type priorities: list(int)
:type priorities: list[int]
:type mapping: dict(str, int)
:type mapping: dict[str, int]
:type point: tuple(float, float)
:type point: tuple[float, float]
Multiple types in a type field will be linked automatically if separated by the word “or”:
:type an_arg: int or None
:vartype a_var: str or int
:rtype: float or str
Cross-referencing Python objects¶
The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:
- :py:mod:¶
Reference a module; a dotted name may be used. This should also be used for package names.
- :py:func:¶
Reference a Python function; dotted names may be used. The role text needs not include trailing parentheses to enhance readability; they will be added automatically by Sphinx if the
add_function_parentheses
config value isTrue
(the default).
- :py:data:¶
Reference a module-level variable.
- :py:const:¶
Reference a “defined” constant. This may be a Python variable that is not intended to be changed.
- :py:class:¶
Reference a class; a dotted name may be used.
- :py:meth:¶
Reference a method of an object. The role text can include the type name and the method name; if it occurs within the description of a type, the type name can be omitted. A dotted name may be used.
- :py:attr:¶
Reference a data attribute of an object.
注解
The role is also able to refer to property.
- :py:exc:¶
Reference an exception. A dotted name may be used.
- :py:obj:¶
Reference an object of unspecified type. Useful e.g. as the
default_role
.0.4 新版功能.
The name enclosed in this markup can include a module name and/or a class name.
For example, :py:func:`filter`
could refer to a function named filter
in the current module, or the built-in function of that name. In contrast,
:py:func:`foo.filter`
clearly refers to the filter
function in the
foo
module.
Normally, names in these roles are searched first without any further
qualification, then with the current module name prepended, then with the
current module and class name (if any) prepended. If you prefix the name with
a dot, this order is reversed. For example, in the documentation of Python’s
codecs
module, :py:func:`open`
always refers to the built-in
function, while :py:func:`.open`
refers to codecs.open()
.
A similar heuristic is used to determine whether the name is an attribute of the currently documented class.
Also, if the name is prefixed with a dot, and no exact match is found, the
target is taken as a suffix and all object names with that suffix are searched.
For example, :py:meth:`.TarFile.close`
references the
tarfile.TarFile.close()
function, even if the current module is not
tarfile
. Since this can get ambiguous, if there is more than one possible
match, you will get a warning from Sphinx.
Note that you can combine the ~
and .
prefixes:
:py:meth:`~.TarFile.close`
will reference the tarfile.TarFile.close()
method, but the visible link caption will only be close()
.
The C Domain¶
The C domain (name c) is suited for documentation of C API.
- .. c:member:: declaration¶
- .. c:var:: declaration¶
Describes a C struct member or variable. Example signature:
.. c:member:: PyObject *PyTypeObject.tp_bases
The difference between the two directives is only cosmetic.
- .. c:function:: function prototype¶
Describes a C function. The signature should be given as in C, e.g.:
.. c:function:: PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Note that you don’t have to backslash-escape asterisks in the signature, as it is not parsed by the reST inliner.
In the description of a function you can use the following info fields (see also Info field lists).
param
,parameter
,arg
,argument
, Description of a parameter.type
: Type of a parameter, written as if passed to thec:expr
role.returns
,return
: Description of the return value.rtype
: Return type, written as if passed to thec:expr
role.retval
,retvals
: An alternative toreturns
for describing the result of the function.
4.3 新版功能: The
retval
field type.For example:
.. c:function:: PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems) :param type: description of the first parameter. :param nitems: description of the second parameter. :returns: a result. :retval NULL: under some conditions. :retval NULL: under some other conditions as well.
which renders as
-
PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)¶
- 参数
type – description of the first parameter.
nitems – description of the second parameter.
- 返回
a result.
- Retval NULL
under some conditions.
- Retval NULL
under some other conditions as well.
- .. c:macro:: name¶
- .. c:macro:: name(arg list)
Describes a C macro, i.e., a C-language
#define
, without the replacement text.In the description of a macro you can use the same info fields as for the
c:function
directive.3.0 新版功能: The function style variant.
- .. c:struct:: name¶
Describes a C struct.
3.0 新版功能.
- .. c:union:: name¶
Describes a C union.
3.0 新版功能.
- .. c:enum:: name¶
Describes a C enum.
3.0 新版功能.
- .. c:enumerator:: name¶
Describes a C enumerator.
3.0 新版功能.
- .. c:type:: typedef-like declaration¶
- .. c:type:: name
Describes a C type, either as a typedef, or the alias for an unspecified type.
Cross-referencing C constructs¶
The following roles create cross-references to C-language constructs if they are defined in the documentation:
Anonymous Entities¶
C supports anonymous structs, enums, and unions.
For the sake of documentation they must be given some name that starts with
@
, e.g., @42
or @data
.
These names can also be used in cross-references,
though nested symbols will be found even when omitted.
The @...
name will always be rendered as [anonymous] (possibly as a
link).
Example:
.. c:struct:: Data
.. c:union:: @data
.. c:var:: int a
.. c:var:: double b
Explicit ref: :c:var:`Data.@data.a`. Short-hand ref: :c:var:`Data.a`.
This will be rendered as:
Explicit ref: Data.[anonymous].a
. Short-hand ref: Data.a
.
3.0 新版功能.
Aliasing Declarations¶
Sometimes it may be helpful list declarations elsewhere than their main documentation, e.g., when creating a synopsis of an interface. The following directive can be used for this purpose.
- .. c:alias:: name¶
Insert one or more alias declarations. Each entity can be specified as they can in the
c:any
role.For example:
.. c:var:: int data .. c:function:: int f(double k) .. c:alias:: data f
becomes
-
int data¶
-
int f(double k)¶
3.2 新版功能.
Options
- :maxdepth: int¶
Insert nested declarations as well, up to the total depth given. Use 0 for infinite depth and 1 for just the mentioned declaration. Defaults to 1.
3.3 新版功能.
- :noroot:¶
Skip the mentioned declarations and only render nested declarations. Requires
maxdepth
either 0 or at least 2.3.5 新版功能.
-
int data¶
Inline Expressions and Types¶
- :c:expr:¶
- :c:texpr:¶
Insert a C expression or type either as inline code (
cpp:expr
) or inline text (cpp:texpr
). For example:.. c:var:: int a = 42 .. c:function:: int f(int i) An expression: :c:expr:`a * f(a)` (or as text: :c:texpr:`a * f(a)`). A type: :c:expr:`const Data*` (or as text :c:texpr:`const Data*`).
will be rendered as follows:
-
int a = 42¶
-
int f(int i)¶
An expression: a * f(a) (or as text: a * f(a)).
A type: const Data* (or as text const Data*).
3.0 新版功能.
-
int a = 42¶
Namespacing¶
3.1 新版功能.
The C language it self does not support namespacing, but it can sometimes be useful to emulate it in documentation, e.g., to show alternate declarations. The feature may also be used to document members of structs/unions/enums separate from their parent declaration.
The current scope can be changed using three namespace directives. They manage
a stack declarations where c:namespace
resets the stack and changes a given
scope.
The c:namespace-push
directive changes the scope to a given inner scope
of the current one.
The c:namespace-pop
directive undoes the most recent
c:namespace-push
directive.
- .. c:namespace:: scope specification¶
Changes the current scope for the subsequent objects to the given scope, and resets the namespace directive stack. Note that nested scopes can be specified by separating with a dot, e.g.:
.. c:namespace:: Namespace1.Namespace2.SomeStruct.AnInnerStruct
All subsequent objects will be defined as if their name were declared with the scope prepended. The subsequent cross-references will be searched for starting in the current scope.
Using
NULL
or0
as the scope will change to global scope.
- .. c:namespace-push:: scope specification¶
Change the scope relatively to the current scope. For example, after:
.. c:namespace:: A.B .. c:namespace-push:: C.D
the current scope will be
A.B.C.D
.
- .. c:namespace-pop::¶
Undo the previous
c:namespace-push
directive (not just pop a scope). For example, after:.. c:namespace:: A.B .. c:namespace-push:: C.D .. c:namespace-pop::
the current scope will be
A.B
(notA.B.C
).If no previous
c:namespace-push
directive has been used, but only ac:namespace
directive, then the current scope will be reset to global scope. That is,.. c:namespace:: A.B
is equivalent to:.. c:namespace:: NULL .. c:namespace-push:: A.B
Configuration Variables¶
The C++ Domain¶
The C++ domain (name cpp) supports documenting C++ projects.
Directives for Declaring Entities¶
The following directives are available. All declarations can start with a
visibility statement (public
, private
or protected
).
- .. cpp:class:: class specifier¶
- .. cpp:struct:: class specifier¶
Describe a class/struct, possibly with specification of inheritance, e.g.,:
.. cpp:class:: MyClass : public MyBase, MyOtherBase
The difference between
cpp:class
andcpp:struct
is only cosmetic: the prefix rendered in the output, and the specifier shown in the index.The class can be directly declared inside a nested scope, e.g.,:
.. cpp:class:: OuterScope::MyClass : public MyBase, MyOtherBase
A class template can be declared:
.. cpp:class:: template<typename T, std::size_t N> std::array
or with a line break:
.. cpp:class:: template<typename T, std::size_t N> \ std::array
Full and partial template specialisations can be declared:
.. cpp:class:: template<> \ std::array<bool, 256> .. cpp:class:: template<typename T> \ std::array<T, 42>
2.0 新版功能: The
cpp:struct
directive.
- .. cpp:function:: (member) function prototype¶
Describe a function or member function, e.g.,:
.. cpp:function:: bool myMethod(int arg1, std::string arg2) A function with parameters and types. .. cpp:function:: bool myMethod(int, double) A function with unnamed parameters. .. cpp:function:: const T &MyClass::operator[](std::size_t i) const An overload for the indexing operator. .. cpp:function:: operator bool() const A casting operator. .. cpp:function:: constexpr void foo(std::string &bar[2]) noexcept A constexpr function. .. cpp:function:: MyClass::MyClass(const MyClass&) = default A copy constructor with default implementation.
Function templates can also be described:
.. cpp:function:: template<typename U> \ void print(U &&u)
and function template specialisations:
.. cpp:function:: template<> \ void print(int i)
- .. cpp:member:: (member) variable declaration¶
- .. cpp:var:: (member) variable declaration¶
Describe a variable or member variable, e.g.,:
.. cpp:member:: std::string MyClass::myMember .. cpp:var:: std::string MyClass::myOtherMember[N][M] .. cpp:member:: int a = 42
Variable templates can also be described:
.. cpp:member:: template<class T> \ constexpr T pi = T(3.1415926535897932385)
- .. cpp:type:: typedef declaration¶
- .. cpp:type:: name
- .. cpp:type:: type alias declaration
Describe a type as in a typedef declaration, a type alias declaration, or simply the name of a type with unspecified type, e.g.,:
.. cpp:type:: std::vector<int> MyList A typedef-like declaration of a type. .. cpp:type:: MyContainer::const_iterator Declaration of a type alias with unspecified type. .. cpp:type:: MyType = std::unordered_map<int, std::string> Declaration of a type alias.
A type alias can also be templated:
.. cpp:type:: template<typename T> \ MyContainer = std::vector<T>
The example are rendered as follows.
-
typedef std::vector<int> MyList¶
A typedef-like declaration of a type.
-
type MyContainer::const_iterator¶
Declaration of a type alias with unspecified type.
-
using MyType = std::unordered_map<int, std::string>¶
Declaration of a type alias.
-
typedef std::vector<int> MyList¶
- .. cpp:enum:: unscoped enum declaration¶
- .. cpp:enum-struct:: scoped enum declaration¶
- .. cpp:enum-class:: scoped enum declaration¶
Describe a (scoped) enum, possibly with the underlying type specified. Any enumerators declared inside an unscoped enum will be declared both in the enum scope and in the parent scope. Examples:
.. cpp:enum:: MyEnum An unscoped enum. .. cpp:enum:: MySpecificEnum : long An unscoped enum with specified underlying type. .. cpp:enum-class:: MyScopedEnum A scoped enum. .. cpp:enum-struct:: protected MyScopedVisibilityEnum : std::underlying_type<MySpecificEnum>::type A scoped enum with non-default visibility, and with a specified underlying type.
- .. cpp:enumerator:: name¶
- .. cpp:enumerator:: name = constant
Describe an enumerator, optionally with its value defined, e.g.,:
.. cpp:enumerator:: MyEnum::myEnumerator .. cpp:enumerator:: MyEnum::myOtherEnumerator = 42
- .. cpp:union:: name¶
Describe a union.
1.8 新版功能.
- .. cpp:concept:: template-parameter-list name¶
警告
The support for concepts is experimental. It is based on the current draft standard and the Concepts Technical Specification. The features may change as they evolve.
Describe a concept. It must have exactly 1 template parameter list. The name may be a nested name. Example:
.. cpp:concept:: template<typename It> std::Iterator Proxy to an element of a notional sequence that can be compared, indirected, or incremented. **Notation** .. cpp:var:: It r An lvalue. **Valid Expressions** - :cpp:expr:`*r`, when :cpp:expr:`r` is dereferenceable. - :cpp:expr:`++r`, with return type :cpp:expr:`It&`, when :cpp:expr:`r` is incrementable.
This will render as follows:
-
template<typename It>
concept std::Iterator¶ Proxy to an element of a notional sequence that can be compared, indirected, or incremented.
Notation
Valid Expressions
1.5 新版功能.
-
template<typename It>
Options¶
Some directives support options:
:noindexentry:
, see 基础标记.:tparam-line-spec:
, for templated declarations. If specified, each template parameter will be rendered on a separate line.1.6 新版功能.
Anonymous Entities¶
C++ supports anonymous namespaces, classes, enums, and unions.
For the sake of documentation they must be given some name that starts with
@
, e.g., @42
or @data
.
These names can also be used in cross-references and (type) expressions,
though nested symbols will be found even when omitted.
The @...
name will always be rendered as [anonymous] (possibly as a
link).
Example:
.. cpp:class:: Data
.. cpp:union:: @data
.. cpp:var:: int a
.. cpp:var:: double b
Explicit ref: :cpp:var:`Data::@data::a`. Short-hand ref: :cpp:var:`Data::a`.
This will be rendered as:
Explicit ref: Data::[anonymous]::a
. Short-hand ref: Data::a
.
1.8 新版功能.
Aliasing Declarations¶
Sometimes it may be helpful list declarations elsewhere than their main documentation, e.g., when creating a synopsis of a class interface. The following directive can be used for this purpose.
- .. cpp:alias:: name or function signature¶
Insert one or more alias declarations. Each entity can be specified as they can in the
cpp:any
role. If the name of a function is given (as opposed to the complete signature), then all overloads of the function will be listed.For example:
.. cpp:alias:: Data::a overload_example::C::f
becomes
whereas:
.. cpp:alias:: void overload_example::C::f(double d) const void overload_example::C::f(double d)
becomes
2.0 新版功能.
Options
- :maxdepth: int¶
Insert nested declarations as well, up to the total depth given. Use 0 for infinite depth and 1 for just the mentioned declaration. Defaults to 1.
3.5 新版功能.
- :noroot:¶
Skip the mentioned declarations and only render nested declarations. Requires
maxdepth
either 0 or at least 2.3.5 新版功能.
Constrained Templates¶
警告
The support for concepts is experimental. It is based on the current draft standard and the Concepts Technical Specification. The features may change as they evolve.
注解
Sphinx does not currently support requires
clauses.
Placeholders¶
Declarations may use the name of a concept to introduce constrained template
parameters, or the keyword auto
to introduce unconstrained template
parameters:
.. cpp:function:: void f(auto &&arg)
A function template with a single unconstrained template parameter.
.. cpp:function:: void f(std::Iterator it)
A function template with a single template parameter, constrained by the
Iterator concept.
Template Introductions¶
Simple constrained function or class templates can be declared with a template introduction instead of a template parameter list:
.. cpp:function:: std::Iterator{It} void advance(It &it)
A function template with a template parameter constrained to be an
Iterator.
.. cpp:class:: std::LessThanComparable{T} MySortedContainer
A class template with a template parameter constrained to be
LessThanComparable.
They are rendered as follows.
-
std::Iterator{It}
void advance(It &it)¶ A function template with a template parameter constrained to be an Iterator.
-
std::LessThanComparable{T}
class MySortedContainer¶ A class template with a template parameter constrained to be LessThanComparable.
Note however that no checking is performed with respect to parameter
compatibility. E.g., Iterator{A, B, C}
will be accepted as an introduction
even though it would not be valid C++.
Inline Expressions and Types¶
- :cpp:expr:¶
- :cpp:texpr:¶
Insert a C++ expression or type either as inline code (
cpp:expr
) or inline text (cpp:texpr
). For example:.. cpp:var:: int a = 42 .. cpp:function:: int f(int i) An expression: :cpp:expr:`a * f(a)` (or as text: :cpp:texpr:`a * f(a)`). A type: :cpp:expr:`const MySortedContainer<int>&` (or as text :cpp:texpr:`const MySortedContainer<int>&`).
will be rendered as follows:
-
int a = 42¶
-
int f(int i)¶
An expression: a * f(a) (or as text: a * f(a)).
A type: const MySortedContainer<int>& (or as text const MySortedContainer<int>&).
1.7 新版功能: The
cpp:expr
role.1.8 新版功能: The
cpp:texpr
role.-
int a = 42¶
Namespacing¶
Declarations in the C++ domain are as default placed in global scope. The
current scope can be changed using three namespace directives. They manage a
stack declarations where cpp:namespace
resets the stack and changes a given
scope.
The cpp:namespace-push
directive changes the scope to a given inner scope
of the current one.
The cpp:namespace-pop
directive undoes the most recent
cpp:namespace-push
directive.
- .. cpp:namespace:: scope specification¶
Changes the current scope for the subsequent objects to the given scope, and resets the namespace directive stack. Note that the namespace does not need to correspond to C++ namespaces, but can end in names of classes, e.g.,:
.. cpp:namespace:: Namespace1::Namespace2::SomeClass::AnInnerClass
All subsequent objects will be defined as if their name were declared with the scope prepended. The subsequent cross-references will be searched for starting in the current scope.
Using
NULL
,0
, ornullptr
as the scope will change to global scope.A namespace declaration can also be templated, e.g.,:
.. cpp:class:: template<typename T> \ std::vector .. cpp:namespace:: template<typename T> std::vector .. cpp:function:: std::size_t size() const
declares
size
as a member function of the class templatestd::vector
. Equivalently this could have been declared using:.. cpp:class:: template<typename T> \ std::vector .. cpp:function:: std::size_t size() const
or:
.. cpp:class:: template<typename T> \ std::vector
- .. cpp:namespace-push:: scope specification¶
Change the scope relatively to the current scope. For example, after:
.. cpp:namespace:: A::B .. cpp:namespace-push:: C::D
the current scope will be
A::B::C::D
.1.4 新版功能.
- .. cpp:namespace-pop::¶
Undo the previous
cpp:namespace-push
directive (not just pop a scope). For example, after:.. cpp:namespace:: A::B .. cpp:namespace-push:: C::D .. cpp:namespace-pop::
the current scope will be
A::B
(notA::B::C
).If no previous
cpp:namespace-push
directive has been used, but only acpp:namespace
directive, then the current scope will be reset to global scope. That is,.. cpp:namespace:: A::B
is equivalent to:.. cpp:namespace:: nullptr .. cpp:namespace-push:: A::B
1.4 新版功能.
Info field lists¶
All the C++ directives for declaring entities support the following info fields (see also Info field lists):
tparam
: Description of a template parameter.
The cpp:function
directive additionally supports the
following fields:
param
,parameter
,arg
,argument
: Description of a parameter.returns
,return
: Description of a return value.retval
,retvals
: An alternative toreturns
for describing the result of the function.throws, throw, exception: Description of a possibly thrown exception.
4.3 新版功能: The retval
field type.
Cross-referencing¶
These roles link to the given declaration types:
- :cpp:any:¶
- :cpp:class:¶
- :cpp:struct:¶
- :cpp:func:¶
- :cpp:member:¶
- :cpp:var:¶
- :cpp:type:¶
- :cpp:concept:¶
- :cpp:enum:¶
- :cpp:enumerator:¶
Reference a C++ declaration by name (see below for details). The name must be properly qualified relative to the position of the link.
2.0 新版功能: The
cpp:struct
role as alias for thecpp:class
role.
Note on References with Templates Parameters/Arguments
These roles follow the Sphinx 交叉引用语法 rules. This means care must
be taken when referencing a (partial) template specialization, e.g. if the
link looks like this: :cpp:class:`MyClass<int>`
.
This is interpreted as a link to int
with a title of MyClass
.
In this case, escape the opening angle bracket with a backslash,
like this: :cpp:class:`MyClass\<int>`
.
When a custom title is not needed it may be useful to use the roles for
inline expressions, cpp:expr
and cpp:texpr
, where
angle brackets do not need escaping.
Declarations without template parameters and template arguments¶
For linking to non-templated declarations the name must be a nested name, e.g.,
f
or MyClass::f
.
Overloaded (member) functions¶
When a (member) function is referenced using just its name, the reference
will point to an arbitrary matching overload.
The cpp:any
and cpp:func
roles use an alternative
format, which simply is a complete function declaration.
This will resolve to the exact matching overload.
As example, consider the following class declaration:
References using the cpp:func
role:
Arbitrary overload:
C::f
,C::f()
Also arbitrary overload:
C::f()
,C::f()
Specific overload:
void C::f()
,void C::f()
Specific overload:
void C::f(int)
,void C::f(int)
Specific overload:
void C::f(double)
,void C::f(double)
Specific overload:
void C::f(double) const
,void C::f(double) const
Note that the add_function_parentheses
configuration variable
does not influence specific overload references.
Templated declarations¶
Assume the following declarations.
In general the reference must include the template parameter declarations, and template arguments for the prefix of qualified names. For example:
template\<typename TOuter> Wrapper::Outer
(template<typename TOuter> Wrapper::Outer
)template\<typename TOuter> template\<typename TInner> Wrapper::Outer<TOuter>::Inner
(template<typename TOuter> template<typename TInner> Wrapper::Outer<TOuter>::Inner
)
Currently the lookup only succeed if the template parameter identifiers are
equal strings. That is, template\<typename UOuter> Wrapper::Outer
will not
work.
As a shorthand notation, if a template parameter list is omitted, then the lookup will assume either a primary template or a non-template, but not a partial template specialisation. This means the following references work as well:
Wrapper::Outer
(Wrapper::Outer
)Wrapper::Outer::Inner
(Wrapper::Outer::Inner
)template\<typename TInner> Wrapper::Outer::Inner
(template<typename TInner> Wrapper::Outer::Inner
)
(Full) Template Specialisations¶
Assume the following declarations.
In general the reference must include a template parameter list for each
template argument list. The full specialisation above can therefore be
referenced with template\<> Outer\<int>
(template<>
Outer<int>
) and template\<> template\<> Outer\<int>::Inner\<bool>
(template<> template<> Outer<int>::Inner<bool>
). As a
shorthand the empty template parameter list can be omitted, e.g.,
Outer\<int>
(Outer<int>
) and Outer\<int>::Inner\<bool>
(Outer<int>::Inner<bool>
).
Partial Template Specialisations¶
Assume the following declaration.
References to partial specialisations must always include the template
parameter lists, e.g., template\<typename T> Outer\<T*>
(template<typename T> Outer<T*>
). Currently the lookup only
succeed if the template parameter identifiers are equal strings.
Configuration Variables¶
The Standard Domain¶
The so-called “standard” domain collects all markup that doesn’t warrant a domain of its own. Its directives and roles are not prefixed with a domain name.
The standard domain is also where custom object descriptions, added using the
add_object_type()
API, are placed.
There is a set of directives allowing documenting command-line programs:
- .. option:: name args, name args, ...¶
Describes a command line argument or switch. Option argument names should be enclosed in angle brackets. Examples:
.. option:: dest_dir Destination directory. .. option:: -m <module>, --module <module> Run a module as a script.
The directive will create cross-reference targets for the given options, referenceable by
option
(in the example case, you’d use something like:option:`dest_dir`
,:option:`-m`
, or:option:`--module`
).cmdoption
directive is a deprecated alias for theoption
directive.
- .. envvar:: name¶
Describes an environment variable that the documented code or program uses or defines. Referenceable by
envvar
.
- .. program:: name¶
Like
py:currentmodule
, this directive produces no output. Instead, it serves to notify Sphinx that all followingoption
directives document options for the program called name.If you use
program
, you have to qualify the references in youroption
roles by the program name, so if you have the following situation.. program:: rm .. option:: -r Work recursively. .. program:: svn .. option:: -r <revision> Specify the revision to work upon.
then
:option:`rm -r`
would refer to the first option, while:option:`svn -r`
would refer to the second one.If
None
is passed to the argument, the directive will reset the current program name.The program name may contain spaces (in case you want to document subcommands like
svn add
andsvn commit
separately).0.5 新版功能.
There is also a very generic object description directive, which is not tied to any domain:
The JavaScript Domain¶
The JavaScript domain (name js) provides the following directives:
- .. js:module:: name¶
This directive sets the module name for object declarations that follow after. The module name is used in the global module index and in cross references. This directive does not create an object heading like
py:class
would, for example.By default, this directive will create a linkable entity and will cause an entry in the global module index, unless the
noindex
option is specified. If this option is specified, the directive will only update the current module name.1.6 新版功能.
- .. js:function:: name(signature)¶
Describes a JavaScript function or method. If you want to describe arguments as optional use square brackets as documented for Python signatures.
You can use fields to give more details about arguments and their expected types, errors which may be thrown by the function, and the value being returned:
.. js:function:: $.getJSON(href, callback[, errback]) :param string href: An URI to the location of the resource. :param callback: Gets called with the object. :param errback: Gets called in case the request fails. And a lot of other text so we need multiple lines. :throws SomeError: For whatever reason in that case. :returns: Something.
This is rendered as:
- $.getJSON(href, callback[, errback])¶
- 参数
href (
string()
) – An URI to the location of the resource.callback – Gets called with the object.
errback – Gets called in case the request fails. And a lot of other text so we need multiple lines.
- 抛出
SomeError()
– For whatever reason in that case.- 返回
Something.
- .. js:method:: name(signature)¶
This directive is an alias for
js:function
, however it describes a function that is implemented as a method on a class object.1.6 新版功能.
- .. js:class:: name¶
Describes a constructor that creates an object. This is basically like a function but will show up with a class prefix:
.. js:class:: MyAnimal(name[, age]) :param string name: The name of the animal :param number age: an optional age for the animal
This is rendered as:
- class MyAnimal(name[, age])¶
- 参数
name (
string()
) – The name of the animalage (
number()
) – an optional age for the animal
- .. js:data:: name¶
Describes a global variable or constant.
- .. js:attribute:: object.name¶
Describes the attribute name of object.
These roles are provided to refer to the described objects:
The reStructuredText domain¶
The reStructuredText domain (name rst) provides the following directives:
- .. rst:directive:: name¶
Describes a reST directive. The name can be a single directive name or actual directive syntax (.. prefix and :: suffix) with arguments that will be rendered differently. For example:
.. rst:directive:: foo Foo description. .. rst:directive:: .. bar:: baz Bar description.
will be rendered as:
- .. rst:directive:option:: name¶
Describes an option for reST directive. The name can be a single option name or option name with arguments which separated with colon (
:
). For example:.. rst:directive:: toctree .. rst:directive:option:: caption: caption of ToC .. rst:directive:option:: glob
will be rendered as:
- .. toctree::
- :glob:¶
options
- :type: description of argument (text)¶
Describe the type of option value.
For example:
.. rst:directive:: toctree .. rst:directive:option:: maxdepth :type: integer or no value
2.1 新版功能.
- .. rst:role:: name¶
Describes a reST role. For example:
.. rst:role:: foo Foo description.
will be rendered as:
- :foo:¶
Foo description.
These roles are provided to refer to the described objects:
The Math Domain¶
The math domain (name math) provides the following roles:
More domains¶
The sphinx-contrib repository contains more domains available as extensions; currently Ada, CoffeeScript, Erlang, HTTP, Lasso, MATLAB, PHP, and Ruby domains. Also available are domains for Chapel, Common Lisp, dqn, Go, Jinja, Operation, and Scala.