PEP 511 – API for code transformers
- PEP
- 511
- Title
- API for code transformers
- Author
- Victor Stinner <vstinner at python.org>
- Status
- Rejected
- Type
- Standards Track
- Created
- 04-Jan-2016
- Python-Version
- 3.6
Contents
Rejection Notice
This PEP was rejected by its author.
This PEP was seen as blessing new Python-like programming languages which are close but incompatible with the regular Python language. It was decided to not promote syntaxes incompatible with Python.
This PEP was also seen as a nice tool to experiment new Python features, but it is already possible to experiment them without the PEP, only with importlib hooks. If a feature becomes useful, it should be directly part of Python, instead of depending on an third party Python module.
Finally, this PEP was driven was the FAT Python optimization project which was abandoned in 2016, since it was not possible to show any significant speedup, but also because of the lack of time to implement the most advanced and complex optimizations.
Abstract
Propose an API to register bytecode and AST transformers. Add also -o
OPTIM_TAG
command line option to change .pyc
filenames, -o
noopt
disables the peephole optimizer. Raise an ImportError
exception on import if the .pyc
file is missing and the code
transformers required to transform the code are missing. code
transformers are not needed code transformed ahead of time (loaded from
.pyc
files).
Rationale
Python does not provide a standard way to transform the code. Projects
transforming the code use various hooks. The MacroPy project uses an
import hook: it adds its own module finder in sys.meta_path
to
hook its AST transformer. Another option is to monkey-patch the
builtin compile()
function. There are even more options to
hook a code transformer.
Python 3.4 added a compile_source()
method to
importlib.abc.SourceLoader
. But code transformation is wider than
just importing modules, see described use cases below.
Writing an optimizer or a preprocessor is out of the scope of this PEP.
Usage 1: AST optimizer
Transforming an Abstract Syntax Tree (AST) is a convenient way to implement an optimizer. It’s easier to work on the AST than working on the bytecode, AST contains more information and is more high level.
Since the optimization can done ahead of time, complex but slow optimizations can be implemented.
Example of optimizations which can be implemented with an AST optimizer:
- Copy propagation:
replace
x=1; y=x
withx=1; y=1
- Constant folding:
replace
1+1
with2
- Dead code elimination
Using guards (see the PEP 510), it is possible to implement a much wider choice of optimizations. Examples:
- Simplify iterable: replace
range(3)
with(0, 1, 2)
when used as iterable - Loop unrolling
- Call pure builtins: replace
len("abc")
with3
- Copy used builtin symbols to constants
- See also optimizations implemented in fatoptimizer, a static optimizer for Python 3.6.
The following issues can be implemented with an AST optimizer:
- Issue #1346238: A constant folding optimization pass for the AST
- Issue #2181: optimize out local variables at end of function
- Issue #2499: Fold unary + and not on constants
- Issue #4264: Patch: optimize code to use LIST_APPEND instead of calling list.append
- Issue #7682: Optimisation of if with constant expression
- Issue #10399: AST Optimization: inlining of function calls
- Issue #11549: Build-out an AST optimizer, moving some functionality out of the peephole optimizer
- Issue #17068: peephole optimization for constant strings
- Issue #17430: missed peephole optimization
Usage 2: Preprocessor
A preprocessor can be easily implemented with an AST transformer. A preprocessor has various and different usages.
Some examples:
- Remove debug code like assertions and logs to make the code faster to run it for production.
- Tail-call Optimization
- Add profiling code
- Lazy evaluation: see lazy_python (bytecode transformer) and lazy macro of MacroPy (AST transformer)
- Change dictionary literals into collection.OrderedDict instances
- Declare constants: see @asconstants of codetransformer
- Domain Specific Language (DSL) like SQL queries. The Python language itself doesn’t need to be modified. Previous attempts to implement DSL for SQL like PEP 335 - Overloadable Boolean Operators was rejected.
- Pattern Matching of functional languages
- String Interpolation, but PEP 498 – Literal String Interpolation was merged into Python 3.6.
MacroPy has a long list of examples and use cases.
This PEP does not add any new code transformer. Using a code transformer will require an external module and to register it manually.
See also PyXfuscator: Python obfuscator, deobfuscator, and user-assisted decompiler.
Usage 3: Disable all optimization
Ned Batchelder asked to add an option to disable the peephole optimizer because it makes code coverage more difficult to implement. See the discussion on the python-ideas mailing list: Disable all peephole optimizations.
This PEP adds a new -o noopt
command line option to disable the
peephole optimizer. In Python, it’s as easy as:
sys.set_code_transformers([])
It will fix the Issue #2506: Add mechanism to disable optimizations.
Usage 4: Write new bytecode optimizers in Python
Python 3.6 optimizes the code using a peephole optimizer. By definition, a peephole optimizer has a narrow view of the code and so can only implement basic optimizations. The optimizer rewrites the bytecode. It is difficult to enhance it, because it written in C.
With this PEP, it becomes possible to implement a new bytecode optimizer in pure Python and experiment new optimizations.
Some optimizations are easier to implement on the AST like constant folding, but optimizations on the bytecode are still useful. For example, when the AST is compiled to bytecode, useless jumps can be emitted because the compiler is naive and does not try to optimize anything.
Use Cases
This section give examples of use cases explaining when and how code transformers will be used.
Interactive interpreter
It will be possible to use code transformers with the interactive interpreter which is popular in Python and commonly used to demonstrate Python.
The code is transformed at runtime and so the interpreter can be slower when expensive code transformers are used.
Build a transformed package
It will be possible to build a package of the transformed code.
A transformer can have a configuration. The configuration is not stored in the package.
All .pyc
files of the package must be transformed with the same code
transformers and the same transformers configuration.
It is possible to build different .pyc
files using different
optimizer tags. Example: fat
for the default configuration and
fat_inline
for a different configuration with function inlining
enabled.
A package can contain .pyc
files with different optimizer tags.
Install a package containing transformed .pyc files
It will be possible to install a package which contains transformed
.pyc
files.
All .pyc
files with any optimizer tag contained in the package are
installed, not only for the current optimizer tag.
Build .pyc files when installing a package
If a package does not contain any .pyc
files of the current
optimizer tag (or some .pyc
files are missing), the .pyc
are
created during the installation.
Code transformers of the optimizer tag are required. Otherwise, the installation fails with an error.
Execute transformed code
It will be possible to execute transformed code.
Raise an ImportError
exception on import if the .pyc
file of the
current optimizer tag is missing and the code transformers required to
transform the code are missing.
The interesting point here is that code transformers are not needed to
execute the transformed code if all required .pyc
files are already
available.
Code transformer API
A code transformer is a class with ast_transformer()
and/or
code_transformer()
methods (API described below) and a name
attribute.
For efficiency, do not define a code_transformer()
or
ast_transformer()
method if it does nothing.
The name
attribute (str
) must be a short string used to identify
an optimizer. It is used to build a .pyc
filename. The name must not
contain dots ('.'
), dashes ('-'
) or directory separators: dots
are used to separated fields in a .pyc
filename and dashes areused
to join code transformer names to build the optimizer tag.
注解
It would be nice to pass the fully qualified name of a module in the
context when an AST transformer is used to transform a module on
import, but it looks like the information is not available in
PyParser_ASTFromStringObject()
.
code_transformer() method
Prototype:
def code_transformer(self, code, context):
...
new_code = ...
...
return new_code
Parameters:
- code: code object
- context: an object with an optimize attribute (
int
), the optimization level (0, 1 or 2). The value of the optimize attribute comes from the optimize parameter of thecompile()
function, it is equal tosys.flags.optimize
by default.
Each implementation of Python can add extra attributes to context. For example, on CPython, context will also have the following attribute:
- interactive (
bool
): true if in interactive mode
XXX add more flags?
XXX replace flags int with a sub-namespace, or with specific attributes?
The method must return a code object.
The code transformer is run after the compilation to bytecode
ast_transformer() method
Prototype:
def ast_transformer(self, tree, context):
...
return tree
Parameters:
- tree: an AST tree
- context: an object with a
filename
attribute (str
)
It must return an AST tree. It can modify the AST tree in place, or create a new AST tree.
The AST transformer is called after the creation of the AST by the parser and before the compilation to bytecode. New attributes may be added to context in the future.
Changes
In short, add:
- -o OPTIM_TAG command line option
- sys.implementation.optim_tag
- sys.get_code_transformers()
- sys.set_code_transformers(transformers)
- ast.PyCF_TRANSFORMED_AST
API to get/set code transformers
Add new functions to register code transformers:
sys.set_code_transformers(transformers)
: set the list of code transformers and updatesys.implementation.optim_tag
sys.get_code_transformers()
: get the list of code transformers.
The order of code transformers matter. Running transformer A and then transformer B can give a different output than running transformer B an then transformer A.
Example to prepend a new code transformer:
transformers = sys.get_code_transformers()
transformers.insert(0, new_cool_transformer)
sys.set_code_transformers(transformers)
All AST transformers are run sequentially (ex: the second transformer gets the input of the first transformer), and then all bytecode transformers are run sequentially.
Optimizer tag
Changes:
- Add
sys.implementation.optim_tag
(str
): optimization tag. The default optimization tag is'opt'
. - Add a new
-o OPTIM_TAG
command line option to setsys.implementation.optim_tag
.
Changes on importlib
:
importlib
usessys.implementation.optim_tag
to build the.pyc
filename to importing modules, instead of always usingopt
. Remove also the special case for the optimizer level0
with the default optimizer tag'opt'
to simplify the code.- When loading a module, if the
.pyc
file is missing but the.py
is available, the.py
is only used if code optimizers have the same optimizer tag than the current tag, otherwise anImportError
exception is raised.
Pseudo-code of a use_py()
function to decide if a .py
file can
be compiled to import a module:
def transformers_tag():
transformers = sys.get_code_transformers()
if not transformers:
return 'noopt'
return '-'.join(transformer.name
for transformer in transformers)
def use_py():
return (transformers_tag() == sys.implementation.optim_tag)
The order of sys.get_code_transformers()
matter. For example, the
fat
transformer followed by the pythran
transformer gives the
optimizer tag fat-pythran
.
The behaviour of the importlib
module is unchanged with the default
optimizer tag ('opt'
).
Peephole optimizer
By default, sys.implementation.optim_tag
is opt
and
sys.get_code_transformers()
returns a list of one code transformer:
the peephole optimizer (optimize the bytecode).
Use -o noopt
to disable the peephole optimizer. In this case, the
optimizer tag is noopt
and no code transformer is registered.
Using the -o opt
option has not effect.
AST enhancements
Enhancements to simplify the implementation of AST transformers:
- Add a new compiler flag
PyCF_TRANSFORMED_AST
to get the transformed AST.PyCF_ONLY_AST
returns the AST before the transformers.
Examples
.pyc filenames
Example of .pyc
filenames of the os
module.
With the default optimizer tag 'opt'
:
.pyc filename | Optimization level |
---|---|
os.cpython-36.opt-0.pyc |
0 |
os.cpython-36.opt-1.pyc |
1 |
os.cpython-36.opt-2.pyc |
2 |
With the 'fat'
optimizer tag:
.pyc filename | Optimization level |
---|---|
os.cpython-36.fat-0.pyc |
0 |
os.cpython-36.fat-1.pyc |
1 |
os.cpython-36.fat-2.pyc |
2 |
Bytecode transformer
Scary bytecode transformer replacing all strings with
"Ni! Ni! Ni!"
:
import sys
import types
class BytecodeTransformer:
name = "knights_who_say_ni"
def code_transformer(self, code, context):
consts = ['Ni! Ni! Ni!' if isinstance(const, str) else const
for const in code.co_consts]
return types.CodeType(code.co_argcount,
code.co_kwonlyargcount,
code.co_nlocals,
code.co_stacksize,
code.co_flags,
code.co_code,
tuple(consts),
code.co_names,
code.co_varnames,
code.co_filename,
code.co_name,
code.co_firstlineno,
code.co_lnotab,
code.co_freevars,
code.co_cellvars)
# replace existing code transformers with the new bytecode transformer
sys.set_code_transformers([BytecodeTransformer()])
# execute code which will be transformed by code_transformer()
exec("print('Hello World!')")
Output:
Ni! Ni! Ni!
AST transformer
Similarly to the bytecode transformer example, the AST transformer also
replaces all strings with "Ni! Ni! Ni!"
:
import ast
import sys
class KnightsWhoSayNi(ast.NodeTransformer):
def visit_Str(self, node):
node.s = 'Ni! Ni! Ni!'
return node
class ASTTransformer:
name = "knights_who_say_ni"
def __init__(self):
self.transformer = KnightsWhoSayNi()
def ast_transformer(self, tree, context):
self.transformer.visit(tree)
return tree
# replace existing code transformers with the new AST transformer
sys.set_code_transformers([ASTTransformer()])
# execute code which will be transformed by ast_transformer()
exec("print('Hello World!')")
Output:
Ni! Ni! Ni!
Other Python implementations
The PEP 511 should be implemented by all Python implementation, but the bytecode and the AST are not standardized.
By the way, even between minor version of CPython, there are changes on the AST API. There are differences, but only minor differences. It is quite easy to write an AST transformer which works on Python 2.7 and Python 3.5 for example.
Discussion
- [Python-ideas] PEP 511: API for code transformers (January 2016)
- [Python-Dev] AST optimizer implemented in Python (August 2012)
Prior Art
AST optimizers
The Issue #17515 “Add sys.setasthook() to allow to use a custom AST” optimizer was a first attempt of API for code transformers, but specific to AST.
In 2015, Victor Stinner wrote the fatoptimizer project, an AST optimizer specializing functions using guards.
In 2014, Kevin Conway created the PyCC optimizer.
In 2012, Victor Stinner wrote the astoptimizer project, an AST optimizer implementing various optimizations. Most interesting optimizations break the Python semantics since no guard is used to disable optimization if something changes.
In 2011, Eugene Toder proposed to rewrite some peephole optimizations in
a new AST optimizer: issue #11549, Build-out an AST optimizer, moving
some functionality out of the peephole optimizer. The patch adds ast.Lit
(it
was proposed to rename it to ast.Literal
).
Python Preprocessors
- MacroPy: MacroPy is an implementation of Syntactic Macros in the Python Programming Language. MacroPy provides a mechanism for user-defined functions (macros) to perform transformations on the abstract syntax tree (AST) of a Python program at import time.
- pypreprocessor: C-style
preprocessor directives in Python, like
#define
and#ifdef
Bytecode transformers
- codetransformer:
Bytecode transformers for CPython inspired by the
ast
module’sNodeTransformer
. - byteplay: Byteplay lets you convert Python code objects into equivalent objects which are easy to play with, and lets you convert those objects back into living Python code objects. It’s useful for applying crazy transformations on Python functions, and is also useful in learning Python byte code intricacies. See byteplay documentation.
See also:
Copyright
This document has been placed in the public domain.
Source: https://github.com/python/peps/blob/master/pep-0511.txt
Last modified: 2021-09-17 18:18:24 GMT